Category Archives: Caul

Journey to birth Coco Milou – an epic masterpiece … stunning!

This is absolutely gorgeous … thank you to Jane McCrae Photography for her beautiful fusion of photos & video to create something so magical … some gorgeous honouring elements … be prepared to cry … and the baby was born in the caul … how auspicious …


Screen Shot 2014-11-18 at 15.44.15


Caul births

I have been (impatiently) waiting for Leilani Rogers, Photographer to share this epic picture. I am friends with the midwife, Heather, from Central Texas Birth Center in this picture and she couldn’t express enough how amazing this was. I think it’s phenomenal that she didn’t touch the bag of waters. 3 en caul births in a little over 2 weeks says a lot about a patient care provider!Leilani says (and watch her page for more pictures): “A baby born in “the caul”, or amniotic sac, is rare. Having it photographed? Even more rare. I had the awesome experience last night of not only seeing a twin birth, but one of the babies born completely inside it’s bag of waters! It was the most amazing thing I’ve ever witnessed as a birth photographer!!! *This image was posted with permission from the mama. It may be shared ONLY with credit and a link to my business page. Thank you for respecting my work so that I can share it online!*”

More on Birth Without Fear.

Another photo this week of a baby born en caul!!! This time captured by {Bella Mia Portraits}

How amazing is this!!!!!?!?!? I sure hope this trend of en caul babies continues! — with Desiree Monk ChapmanDenita Oby and Molly Germash.


Midwife thinking – In defence of the amniotic sac – updated


Fabulous information


Artificial rupture of membranes (ARM) aka ‘breaking the waters’ is a common intervention during birth. However, an ARM should not be carried out without a good understanding of how the amniotic sac and fluid function in labour. Women need to befully informed of the risks associated this intervention before agreeing to alter their labour in this way. This post will discuss how the ‘waters’ work in labour and the implications of breaking them. Most of the information in this blog is available in any good physiology textbook (eg. Coad & Dunstall 2011). I have included references and links for additional content.

Anatomy and physiology

By the end of pregnancy the baby is surrounded by around 500-1000mls of Fluid. This is mostly made up of urine and respiratory tract secretions produced and excreted by the baby. The amniotic fluid is constantly being produced and renewed – Baby swallows the fluid; it is passed through the gut into the baby’s circulation; then sent out via the umbilical cord through the placenta. This process continues even if the amniotic membranes have broken. So, even when the waters have ‘gone’ there is still some fluid present ie. there is no such thing as a ‘dry labour’.

The amniotic membrane is adhered to the chorion – the other membrane attached to the placenta that sits between the amniotic membrane and the uterus. These membranes look like one, but you can tease them apart after birth.

During pregnancy

The amniotic sac protects and prepares baby by:

  • Cushioning any bumps to the abdomen.
  • Maintaining a constant temperature.
  • Allowing the movement essential for muscle development.
  • Creating space for growth.
  • Protecting against infection – the membranes provide a barrier + the fluid contains antimicrobial peptides.
  • Assisting lung development – baby breathes fluid in and out of the lungs.
  • Taste and smell – the smell of amniotic fluid has been found to have a calming effect on newborns (Varendia et al. 1998).

After 40 weeks gestation around 20% of babies will pass meconium into their amniotic fluid as the bowels reach maturity and begin to work.  This is perfectly normal and is not a sign of distress. This meconium is diluted and processed with the amniotic fluid as described above.

During labour

Around 80-90% of women start labour with their membranes intact. This is probably because the amniotic sac plays an important role in the physiology of a natural birth.

General fluid pressure

During a contraction the pressure is equalised throughout the fluid rather than directly squeezing the baby, placenta and umbilical cord. This protects the baby and his/her oxygen supply from the effects of the powerful uterine contractions. When the membranes have ruptured the placenta and baby get compressed during a contraction. Most babies can cope well with this, but the experience of birth for the baby is probably not as pleasant. When the placenta is compressed blood circulation is interrupted reducing the oxygen supply to baby. In addition, the umbilical cord may be in a position where it gets squashed between baby and uterus with contractions. When this happens the baby’s heart rate will dip during a contraction in response to the reduced blood flow. A healthy baby can cope with this intermittent reduction in oxygen supply for hours (it’s a bit like holding your breath for 30 seconds every few minutes). However, this is probably not so great for an extended period of time, or if the baby is already compromised through prematurity or a poorly functioning placenta.


The sac of amniotic fluid is described as having two sections – the forewaters (in front of baby’s head) and the hind waters (behind baby’s head). A ‘hind water leak’ refers to a tear in the the amniotic membranes behind the baby’s head. Often this is experienced by the woman as an occasional light trickle as the fluid has to run down the outside of the sac and past baby’s head to get out.

During labour forewaters are formed as the lower segment of the uterus stretches and the chorion (the external membrane) detaches from it. The well flexed baby’s head fits into the cervix and cuts off the fluid in front of the head (forewaters) from the fluid behind (hind waters). Pressure from contractions cause the forewaters to bulge downwards into the dilating cervix and eventually through into the vagina. This protects the forewaters from the high  pressure applied to the hind waters during a contraction and keeps the membranes intact. The forewaters transmit pressure evenly over the cervix which aids further dilatation. When the baby is in an OP position the head may not flex as well to block off the hind waters = pressure is able to move into the forewaters and they may rupture. Early rupture of membranes if often a feature of an OP labour.


The forewaters usually break when the cervix is almost fully open and the membranes are bulging so far into the vagina that they burst. This ‘fluid burst’ lubricates the vaginal and perineum to facilitate movement of the baby and stretching of the tissues.

Born in the caul

If is fairly common for a baby to be born in the amniotic sac when labour is left to unfold without interference. The photograph at the beginning of this post is my lovely friend Holly birthing her baby in his caul. There are also photos on the Birthing Way website of a birth in the caul.

Eventually the force of the contraction and the movement of the baby will rupture the sac as the baby’s body is born. You don’t need to worry about the sac holding the baby back. A baby and uterus are stronger than the membranes. The rupture of the sac can be rather dramatic and messy and is another good reason for the midwife not to be fiddling about at the perineum during birth. Births in the caul seems more common during waterbirths (in my experience) and are possibly one of the most amazing sights in the world (and less messy than on land):
(note the baby above is born in the OP position)

Video Link 2

Lisa Barrett also shares film of a beautiful caul birth here.

Historically being born in the caul was considered good luck for the baby. It was also believed that a baby who was born in the caul would be protected from drowning. Midwives used to dry out amniotic membranes and sell them to sailors as a talisman to protect them from drowning. You can find out more about the social history of the caul in an old journal article by Forbes (1953).

How does birth in the caul influence the baby’s microbiota?

I don’t know the answer to this question. However, increasingly research is identifying the importance of intestinal microbiota for health, including immune development and function (Bengmark 2012). This is now thought to be the mechanism behind the increased risk of long term health problems for babies not born via the vagina ie. by c-section (Azad, et al. 2013;Penders, et al. 2006). During a vaginal birth the baby is colonized by microorganisms as he passes through the vagina. Penders et al.’s study concluded that: “Term infants who were born vaginally at home and were breastfed exclusively seemed to have the most ‘beneficial’ gut microbiota”. So, this raises questions about what happens if the baby does not come into contact with vaginal microorganisms because the amniotic sac is intact? In theory, during a waterbirth the pool water is likely to contain microorganisms from the mother, therefore the baby could become colonized. But on land – I don’t know.

C-section and the amniotic sac

There are photos circulating on the internet of babies in their caul during a c-section (google caul+caesarean or cesarean). I would like to know the background stories to these photographs. There has been a study supporting this practice for preterm babies (Wang, et al. 2013), and you can see a photo from a case study here (Prabakar & Nimaroff 2012). However, there is no research supporting this method for full term babies.

Artificial rupture of membranes (ARM) aka amniotomy

Breaking the membranes with an amni-hook is a common intervention during labour. It is usually the second step in the induction process, and also done in an attempt to speed up spontaneous labour. In an induced labour, intact membranes can prevent the artificially created contractions from getting into an effective pattern. There is also the theoretical risk of an induced contraction (that is too strong) forcing amniotic fluid through the membranes/placenta and into the blood system causing an amniotic embolism and maternal death. So an ARM is recommended before a syntocinon/pitocin infusion is started (although this may not be a worldwide practice).

In a spontaneous labour the rationale for an ARM is that once the forewaters have gone the hard baby’s head will apply direct pressure to the cervix and open it quicker. However, a cochrane review of the available research states that “the evidence showed no shortening of the length of first stage of labour and a possible increase in caesarean section. Routine amniotomy is not recommended for normally progressing labours or in labours which have become prolonged.” The Royal College of Midwives (UK) have evidenced based guidelines about ‘rupturing membranes’ that you can download from their site.

There are also risks associated with an ARM:

  • It may increase contraction intensity and pain which can result in the woman feeling unable to cope and choosing an epidural… and the intervention rollercoaster begins.
  • The baby may become distressed due to compression of the placenta, baby and/or cord (as described above).
  • Fok et al (2005) found amniotomy altered fetal vascular blood flow, suggesting there is a fetal stress response following an ARM.
  • The umbilical cord may be swept down by the waters and either past the baby’s head, or wedged next to the baby’s head. This is called a ‘cord prolapse’ and is an emergency situation. The compression of the cord interrupts or stops the supply of oxygen to the baby and the baby must be born asap by c-section. The only cord prolapse I have been involved with happened after an ARM (not done by me  – honest!). The outcome for the woman was a live baby born by emergency c-section. Her previous 2 babies had been vaginal births.
  • If there is a blood vessel running through the membranes (see picture below) and the amni-hook ruptures the vessel, the baby will lose blood volume fast – another emergency situation.
  • There is a slight increase in the risk of infection but mostly for the mother (not baby). This risk is minimal if nothing is put into the vagina during labour (ie. hands, instruments etc.).



The amniotic sac and fluid play an important role in facilitating birth and protecting the baby. There is no evidence that rupturing this sac will reduce the length of labour. While every intervention has it’s place including ARM, midwives need to carefully consider the risks before offering it to women. Also women must be fully informed of the risks before choosing an ARM during their labour.

Edited and updated: July 2013

Born in the caul – fab

Your Placenta – Michigan Placenta Encapsulation Services fabulous photo of baby born in the caul
LinkA glimpse into the womb: This astonishing photograph, taken by obstetrician Dr Aris Tsigris, shows the baby who was delivered inside an intact amniotic sac. Until the sac is punctured the baby will behave as if it is still inside its mother


Being born ‘with the caul’ occurs when a child is delivered with a portion of amniotic membrane on their face. ‘Caul’ literally means ‘helmeted head’ or ‘veil’.

A baby with the caul is called the ‘caulbearer’.

Being born with the caul in medieval times was interpreted as a sign of good luck and that the child was destined for greatness.

Saving the caul was considered an important tradition of childbirth. The midwife would rub a sheet of paper across the baby’s head and face, pressing the material of the caul onto the paper.

It would then be presented to the mother, to be kept as an heirloom.

Other traditions have linked the caul to fertility and some say it protects a person from the forces of evil, such as witches and sorcerers.

Being born ‘en caul’ is the term used when the child is born within an intact amniotic sac, which occurred in the story above. It is also known as a ‘veiled birth’.

Most en caul births occur in premature babies.

Some legends suggest that being born en caul means you will never drown.

Statistics relating to such births are sparse, but deliveries involving any form of caul are thought to occur in roughly one in 80,000 births.

Born in the Caul

I had the honour & privilege to support a lovely couple (2nd baby) at their home waterbirth.  The baby was born in the caul and it was amazing, very calm and just perfect.  The mum laboured and birthed beautifully. 

These photos that follow (are not of the mum) but from the site and are just amazing.